
© 2005 IBM Corporation

IBM eServer iSeries
Initiative for Tools Innovation

IBM eServer iSeries

8 Copyright IBM Corporation, 2005. All Rights Reserved.
This publication may refer to products that are not currently
available in your country. IBM makes no commitment to make
available any products referred to herein.

Indexing Strategies
for DB2 UDB for iSeries

Mike Cain
DB2 UDB for iSeries Center of Competency
Rochester, MN USA

© 2005 IBM Corporation

IBM eServer iSeries

Scenario

Find the first occurrence of “IBM” in a very large book…

What do you do first?

Turn to the index!

in·dex Something that serves to guide, point out,
or otherwise facilitate reference.

© 2005 IBM Corporation

IBM eServer iSeries

Creating a useful index

is both a Science and an Art.

Indexing Technology
within DB2 UDB for iSeries

© 2005 IBM Corporation

IBM eServer iSeries

Two types of indexing technologies are supported

•Radix Index

•Encoded Vector Index

Each type of index has specific uses and advantages

Respective indexing technologies compliment each other

Indexes can be used for statistics and implementation

Indexes can provide RRNs or data

Indexes are scanned or probed

DB2 UDB for iSeries

© 2005 IBM Corporation

IBM eServer iSeries

Radix Index

• Index “tree” structure
• Key values are compressed

– Common patterns are stored once
– Unique portion stored in “leaf” pages
– Positive impact on size and depth of the index tree

• Algorithm used to find values
– Binary search
– Modified to fit the data structure

• Maintenance
– Index data is automatically spread across all available disk units
– Tree is automatically rebalanced to maintain an efficient structure

© 2005 IBM Corporation

IBM eServer iSeries

Radix Index

ADVANTAGES:
Very fast access to a single key
value
Also fast for small, selected
range of key values (low
cardinality)
Provides order

DISADVANTAGES:
Table rows retrieved in order of key
values (not physical order) which equates
to random I/O’s
No way to predict which physical index
pages are next when traversing the index
for large number of key values

……
ARIZONA005
IOWA004
MISSOURI003
MISSIPPI002
ARKANSAS001

Database Table

ROOTROOT

Test
Node
Test
Node MISSMISS

ISSIPPI
002

ISSIPPI
002

OURI
003

OURI
003

IOWA
004

IOWA
004

IZONA
005

IZONA
005

KANSAS
001

KANSAS
001

ARAR

© 2005 IBM Corporation

IBM eServer iSeries

Encoded Vector Index (EVI)

• Index for delivering fast data access in decision support and query
reporting environments
– Advanced technology from IBM Research
– Variation on bitmap indexing
– Fast access to statistics improve query optimizer decision making

• Not a “tree” structure

• Can only be created through an SQL interface or iSeries
Navigator

CREATE ENCODED VECTOR INDEX
SchemaName/IndexName ON SchemaName/TableName
(ColumnName)
WITH n DISTINCT VALUES;

© 2005 IBM Corporation

IBM eServer iSeries

Encoded Vector Index (EVI)

1
…

38
38
7
2
9
18
17
1

Vector

276083000738Wyoming
34030111122237Virginia

…
73009976052Arkansas
50008000511Arizona

CountLast
Row

First
RowCodeKey

Value

Symbol Table

Symbol table contains information for each distinct key value
- Each key value is assigned a unique code (key compression)
- Code is 1, 2, or 4 bytes depending on number of distinct key values

Rather then a bit array for each distinct key value, the use one array of codes

RRN
1
2
3
4
5
6
7
8
9
…

© 2005 IBM Corporation

IBM eServer iSeries

cardinality The number of elements in a set.
•High cardinality = large distinct number of values

•Low cardinality = small distinct number of values

In general…
•A radix index is best when accessing a small set of rows when
the key cardinality is high

•An encoded vector index is best when accessing a set of rows
when the key cardinality is low

•Understanding the data and query are key

DB2 UDB for iSeries

Query Optimization
(using indexes)

© 2005 IBM Corporation

IBM eServer iSeries

Set of methods
Assembled into query "graphs"

Query 1

Query 2

Query 3

Query Graphs and Flows

© 2005 IBM Corporation

IBM eServer iSeries

Cost based optimization dictates that the fastest access method
for a given table will vary based upon selectivity of the query

Number of rows searched / accessed
Few Many

Response
Time Method 3

Low

High

Method 1

Method 2

Data Access Methods

© 2005 IBM Corporation

IBM eServer iSeries

Query optimization will generally follow this simplified strategy:

Gather meta-data and statistics for costing
Selectivity statistics
Indexes available to be costed

Sort the indexes based upon their usefulness
Environmental attributes that may affect the costs

Generate default cost
Build an access plan associated with the default plan

For each index:
Gather information needed specific to this index
Build an access plan based on this index
Cost the use of the index with this access plan
Compare the resulting cost against the cost from the current best plan

Strategy for Query Optimization

?

© 2005 IBM Corporation

IBM eServer iSeries

Optimizing indexes will generally follow this simplified strategy:

Gather list of indexes for statistics and costing
Sort the list of indexes considering how the index can be used

Local selection
Joining
Grouping
Ordering
Index only access

One index may be useful for statistics, and another useful for implementation

Strategy for Query Optimization

?

© 2005 IBM Corporation

IBM eServer iSeries

Query Optimization

SQL request

DB Monitor
Data

Joblog
Messages

SQL Info from
PGMs & PKGs

Visual
Explain

SQE Plan
Cache

Query Optimization Feedback

Index Advice

Index Advice Index Advice

Indexing Strategies

© 2005 IBM Corporation

IBM eServer iSeries

The goals of creating indexes are:

•Provide the optimizer the statistics needed to
understand the data, based on the query

•Provide the optimizer implementation choices, based on
the selectivity of the query

Accurate statistics means accurate costing

Accurate costing means optimal query plan

Optimal query plans means best performance

DB2 UDB for iSeries

© 2005 IBM Corporation

IBM eServer iSeries

Proactive method
•Analyze the data model, application and SQL requests

Reactive method
•Rely on optimizer feedback and actual implementation methods

Understand the data being queried
•Column selectivity
•Column cardinality

Separating complex queries into individual parts by table
•Selecting
•Joining
•Grouping
•Ordering
•Subquery
•View

The Process of Identifying Indexes

© 2005 IBM Corporation

IBM eServer iSeries

Radix Indexes
•Local selection columns
•Join columns
•Local selection columns + join columns
•Local selection columns + grouping columns
•Local selection columns + ordering columns
•Ordering columns + local selection columns

Encoded Vector Indexes
•Local selection column (single key)
•Join column (data warehouse - star or snowflake schema)

Indexing Strategy - Basic Approach

Minimum

© 2005 IBM Corporation

IBM eServer iSeries

Indexing Strategy - Examples

-- Query 1
SELECT A.CUSTOMER_NO, A.ORDER_DATE, A.QUANTITY
FROM ORDERS A
WHERE A.CUSTOMER_NO = 0112358;

CREATE INDEX ORDERS_IX1 ON ORDERS (CUSTOMER_NO);

-- Query 2
SELECT A.CUSTOMER_NO, A.ORDER_DATE, A.QUANTITY
FROM ORDERS A
WHERE A.CUSTOMER_NO = 0112358
AND A.ITEM_ID = ‘ABC123YXZ’;

CREATE INDEX ORDERS_IX2 ON ORDERS (CUSTOMER_NO, ITEM_ID);

© 2005 IBM Corporation

IBM eServer iSeries

Indexing Strategy - Examples
-- Query 3
SELECT A.CUSTOMER_NO, A.CUSTOMER, A.ORDER_DATE
FROM ORDERS A
WHERE A.CUSTOMER_NO IN (0112358, 1321345, 5891442)
AND A.ORDER_DATE > ‘2005/06/30’
ORDER BY A.ORDER_DATE;

CREATE INDEX ORDERS_IX3a ON ORDERS (CUSTOMER_NO, ORDER_DATE);
CREATE INDEX ORDERS_IX3b ON ORDERS (ORDER_DATE, CUSTOMER_NO);

-- Query 4
SELECT A.CUSTOMER_NO, A.CUSTOMER, A.ORDER_DATE
FROM ORDERS A
WHERE A.CUSTOMER_NO = 0112358
OR A.ORDER_DATE = ‘2005/06/30’;

CREATE INDEX ORDERS_IX4 ON ORDERS (CUSTOMER_NO);
CREATE ENCODED VECTOR INDEX ORDERS_EVI4

ON ORDERS (ORDER_DATE);

© 2005 IBM Corporation

IBM eServer iSeries

Indexing Strategy - Examples

-- Query 5
SELECT A.CUSTOMER_NO, B.CUSTOMER, A.ORDER_DATE, A.QUANTITY
FROM ORDERS A,

CUSTOMERS B,
ITEMS C

WHERE A.CUSTKEY = B.CUSTKEY
AND A.ITEMKEY = C.ITEMKEY
AND A.CUSTOMER_NO = 0112358;

CREATE INDEX ORDERS_IX5a ON ORDERS (CUSTOMER_NO, CUSTKEY);
CREATE INDEX ORDERS_IX5b ON ORDERS (CUSTOMER_NO, ITEMKEY);
CREATE INDEX CUSTOMERS_IX5 ON CUSTOMERS (CUSTKEY);
CREATE INDEX ITEMS_IX5 ON ITEMS (ITEMKEY);

© 2005 IBM Corporation

IBM eServer iSeries

Indexing Strategy - Examples

If the optimizer feedback indicates:

Full table scan Create an index on local selection columns

Temporary index Create an index on join columns
Create an index on grouping columns
Create an index on ordering columns

Hash table Create an index on join columns
Create an index on grouping columns

“Perfect”, multiple key column radix indexes are usually best

More information and examples at:
ibm.com/servers/enable/site/education/abstracts/indxng_abs.html

Looking into the Future…

Thank You

IBM eServer iSeries
Initiative for Tools Innovation

WANT MORE INFORMATION?

Centerfield Technology – Rochester, Minnesota
http:www.centerfieldtechnology.com

IBM eServer iSeries Initiative for Tools Innovation
http://www.developer.ibm.com/vic/hardware/portal/iii_pages/iii_tools_innov_index

Indexing Strategies for DB2 UDB on iSeries
http://www-03.ibm.com/servers/enable/site/education/abstracts/indxng_abs.html

IBM Corporation 1994-2005. All rights reserved.
References in this document to IBM products or services do not imply that IBM intends to make them available in every country.

The following terms are trademarks of International Business Machines Corporation in the United States, other countries, or both:

Rational is a trademark of International Business Machines Corporation and Rational Software Corporation in the United States, other countries, or both.
Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.
Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.
Intel, Intel Inside (logos), MMX and Pentium are trademarks of Intel Corporation in the United States, other countries, or both.
UNIX is a registered trademark of The Open Group in the United States and other countries.
SET and the SET Logo are trademarks owned by SET Secure Electronic Transaction LLC.
Other company, product or service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

All customer examples described are presented as illustrations of how those customers have used IBM products and the results they may have achieved. Actual environmental costs and performance
characteristics may vary by customer.

Information concerning non-IBM products was obtained from a supplier of these products, published announcement material, or other publicly available sources and does not constitute an endorsement
of such products by IBM. Sources for non-IBM list prices and performance numbers are taken from publicly available information, including vendor announcements and vendor worldwide homepages.
IBM has not tested these products and cannot confirm the accuracy of performance, capability, or any other claims related to non-IBM products. Questions on the capability of non-IBM products should
be addressed to the supplier of those products.

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. Contact your local IBM office or IBM authorized
reseller for the full text of the specific Statement of Direction.

Some information addresses anticipated future capabilities. Such information is not intended as a definitive statement of a commitment to specific levels of performance, function or delivery schedules
with respect to any future products. Such commitments are only made in IBM product announcements. The information is presented here to communicate IBM's current investment and development
activities as a good faith effort to help with our customers' future planning.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or performance that any user will experience will vary
depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore,
no assurance can be given that an individual user will achieve throughput or performance improvements equivalent to the ratios stated here.

Photographs shown are of engineering prototypes. Changes may be incorporated in production models.

Trademarks and Disclaimers
IBM eServer iSeries

© 2005 IBM Corporation

