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Scenario

Find the first occurrence of “IBM” in a very large book…

What do you do first?

Turn to the index!

in·dex Something that serves to guide, point out,
or otherwise facilitate reference.
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Creating a useful index

is both a Science and an Art.



Indexing Technology
within DB2 UDB for iSeries



© 2005 IBM Corporation

IBM eServer iSeries

Two types of indexing technologies are supported

•Radix Index

•Encoded Vector Index

Each type of index has specific uses and advantages

Respective indexing technologies compliment each other

Indexes can be used for statistics and implementation

Indexes can provide RRNs or data

Indexes are scanned or probed

DB2 UDB for iSeries
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Radix Index

• Index “tree” structure
• Key values are compressed

– Common patterns are stored once
– Unique portion stored in “leaf” pages
– Positive impact on size and depth of the index tree

• Algorithm used to find values
– Binary search
– Modified to fit the data structure

• Maintenance
– Index data is automatically spread across all available disk units
– Tree is automatically rebalanced to maintain an efficient structure
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Radix Index

ADVANTAGES:
Very fast access to a single key 
value 
Also fast for small, selected 
range of key values (low 
cardinality)
Provides order

DISADVANTAGES:
Table rows retrieved in order of key 
values (not physical order) which equates 
to random I/O’s
No way to predict which physical index 
pages are next when traversing the index 
for large number of key values

……
ARIZONA005
IOWA004
MISSOURI003
MISSIPPI002
ARKANSAS001

Database Table

ROOTROOT

Test 
Node
Test 
Node MISSMISS

ISSIPPI
002

ISSIPPI
002

OURI
003

OURI
003

IOWA
004

IOWA
004

IZONA
005

IZONA
005

KANSAS
001

KANSAS
001

ARAR



© 2005 IBM Corporation

IBM eServer iSeries

Encoded Vector Index (EVI)

• Index for delivering fast data access in decision support and query 
reporting environments
– Advanced technology from IBM Research
– Variation on bitmap indexing
– Fast access to statistics improve query optimizer decision making

• Not a “tree” structure

• Can only be created through an SQL interface or iSeries 
Navigator

CREATE ENCODED VECTOR INDEX
SchemaName/IndexName ON SchemaName/TableName
(ColumnName)
WITH n DISTINCT VALUES;
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Encoded Vector Index (EVI)
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Symbol table contains information for each distinct key value
- Each key value is assigned a unique code (key compression)
- Code is 1, 2, or 4 bytes depending on number of distinct key values
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cardinality The number of elements in a set.
•High cardinality = large distinct number of values

•Low cardinality = small distinct number of values

In general…
•A radix index is best when accessing a small set of rows when 
the key cardinality is high

•An encoded vector index is best when accessing a set of rows 
when the key cardinality is low

•Understanding the data and query are key

DB2 UDB for iSeries



Query Optimization
(using indexes)
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Set of methods
Assembled into query "graphs"

Query 1

Query 2

Query 3

Query Graphs and Flows
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Cost based optimization dictates that the fastest access method 
for a given table will vary based upon selectivity of the query

Number of rows searched / accessed
Few Many

Response
Time Method 3

Low

High

Method 1

Method 2

Data Access Methods
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Query optimization will generally follow this simplified strategy:

Gather meta-data and statistics for costing
Selectivity statistics
Indexes available to be costed

Sort the indexes based upon their usefulness
Environmental attributes that may affect the costs

Generate default cost
Build an access plan associated with the default plan

For each index:
Gather information needed specific to this index
Build an access plan based on this index
Cost the use of the index with this access plan
Compare the resulting cost against the cost from the current best plan

Strategy for Query Optimization

?
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Optimizing indexes will generally follow this simplified strategy:

Gather list of indexes for statistics and costing
Sort the list of indexes considering how the index can be used

Local selection
Joining
Grouping
Ordering
Index only access

One index may be useful for statistics, and another useful for implementation

Strategy for Query Optimization

?
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Query Optimization

SQL request

DB Monitor 
Data

Joblog 
Messages

SQL Info from 
PGMs & PKGs

Visual
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SQE Plan 
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Query Optimization Feedback

Index Advice

Index Advice Index Advice



Indexing Strategies
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The goals of creating indexes are:

•Provide the optimizer the statistics needed to 
understand the data, based on the query

•Provide the optimizer implementation choices, based on 
the selectivity of the query

Accurate statistics means accurate costing

Accurate costing means optimal query plan

Optimal query plans means best performance

DB2 UDB for iSeries
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Proactive method
•Analyze the data model, application and SQL requests

Reactive method
•Rely on optimizer feedback and actual implementation methods

Understand the data being queried
•Column selectivity
•Column cardinality

Separating complex queries into individual parts by table
•Selecting
•Joining
•Grouping
•Ordering
•Subquery
•View

The Process of Identifying Indexes
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Radix Indexes
•Local selection columns
•Join columns
•Local selection columns + join columns
•Local selection columns + grouping columns
•Local selection columns + ordering columns
•Ordering columns + local selection columns

Encoded Vector Indexes
•Local selection column (single key)
•Join column (data warehouse - star or snowflake schema)

Indexing Strategy - Basic Approach

Minimum



© 2005 IBM Corporation

IBM eServer iSeries

Indexing Strategy - Examples

-- Query 1
SELECT A.CUSTOMER_NO, A.ORDER_DATE, A.QUANTITY
FROM ORDERS A
WHERE A.CUSTOMER_NO = 0112358;

CREATE INDEX ORDERS_IX1 ON ORDERS (CUSTOMER_NO);

-- Query 2
SELECT A.CUSTOMER_NO, A.ORDER_DATE, A.QUANTITY
FROM ORDERS A
WHERE A.CUSTOMER_NO = 0112358
AND A.ITEM_ID = ‘ABC123YXZ’;

CREATE INDEX ORDERS_IX2 ON ORDERS (CUSTOMER_NO, ITEM_ID);
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Indexing Strategy - Examples
-- Query 3
SELECT A.CUSTOMER_NO, A.CUSTOMER, A.ORDER_DATE
FROM ORDERS A
WHERE A.CUSTOMER_NO IN (0112358, 1321345, 5891442)
AND A.ORDER_DATE > ‘2005/06/30’
ORDER BY A.ORDER_DATE;

CREATE INDEX ORDERS_IX3a ON ORDERS (CUSTOMER_NO, ORDER_DATE);
CREATE INDEX ORDERS_IX3b ON ORDERS (ORDER_DATE, CUSTOMER_NO);

-- Query 4
SELECT A.CUSTOMER_NO, A.CUSTOMER, A.ORDER_DATE
FROM ORDERS A
WHERE A.CUSTOMER_NO = 0112358
OR A.ORDER_DATE = ‘2005/06/30’;

CREATE INDEX ORDERS_IX4 ON ORDERS (CUSTOMER_NO);
CREATE ENCODED VECTOR INDEX ORDERS_EVI4

ON ORDERS (ORDER_DATE);
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Indexing Strategy - Examples

-- Query 5
SELECT A.CUSTOMER_NO, B.CUSTOMER, A.ORDER_DATE, A.QUANTITY
FROM ORDERS A,

CUSTOMERS B,
ITEMS C

WHERE A.CUSTKEY = B.CUSTKEY
AND A.ITEMKEY = C.ITEMKEY
AND A.CUSTOMER_NO = 0112358;

CREATE INDEX ORDERS_IX5a ON ORDERS (CUSTOMER_NO, CUSTKEY);
CREATE INDEX ORDERS_IX5b ON ORDERS (CUSTOMER_NO, ITEMKEY);
CREATE INDEX CUSTOMERS_IX5 ON CUSTOMERS (CUSTKEY);
CREATE INDEX ITEMS_IX5 ON ITEMS (ITEMKEY);
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Indexing Strategy - Examples

If the optimizer feedback indicates:

Full table scan Create an index on local selection columns

Temporary index Create an index on join columns
Create an index on grouping columns
Create an index on ordering columns

Hash table Create an index on join columns
Create an index on grouping columns

“Perfect”, multiple key column radix indexes are usually best

More information and examples at:
ibm.com/servers/enable/site/education/abstracts/indxng_abs.html 



Looking into the Future…



Thank You

IBM eServer iSeries 
Initiative for Tools Innovation

WANT MORE INFORMATION?

Centerfield Technology – Rochester, Minnesota
http:www.centerfieldtechnology.com  

IBM eServer iSeries Initiative for Tools Innovation
http://www.developer.ibm.com/vic/hardware/portal/iii_pages/iii_tools_innov_index

Indexing Strategies for DB2 UDB on iSeries
http://www-03.ibm.com/servers/enable/site/education/abstracts/indxng_abs.html
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